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Modulating social learning-induced
evaluation updating during human sleep

Check for updates

Danni Chen 1, Tao Xia1, Ziqing Yao1, Lingqi Zhang 1 & Xiaoqing Hu 1,2

People often change their evaluationsupon learningabout their peers’evaluations, i.e., social learning.
Given sleep’s vital role in consolidating daytime experiences, sleep may facilitate social learning,
thereby further changing people’s evaluations. Combining a social learning task and the sleep-based
targeted memory reactivation technique, we asked whether social learning-induced evaluation
updating can be modulated during sleep. After participants had indicated their initial evaluation of
snacks, they learned about their peers’ evaluations while hearing the snacks’ spoken names. During
the post-learning non-rapid-eye-movement sleep, we re-played half of the snack names (i.e., cued
snack) to reactivate the associated peers’ evaluations. Upon waking up, we found that the social
learning-induced evaluation updating further enlarged for both cued and uncued snacks. Examining
sleep electroencephalogram (EEG) activity revealed that cue-elicited delta-theta EEG power and the
overnight N2 sleep spindle density predicted post-sleep evaluation updating for cued but not for
uncued snacks. These findings underscore the role of sleep-mediated memory reactivation and the
associated neural activity in supporting social learning-induced evaluation updating.

Evaluations and choices are often guided by retrieval of first-hand experi-
ences: when choosing a restaurant, we often think about our last visit, the
dining experiences, and the accompanying emotional feelings1–3. However,
in addition to using first-hand experiences to guide our choices4–6, we also
acquire or change evaluations via observing our peers’ evaluations and
choices, known as social learning7–9. Social learning is prevalent in society,
influencing everyday choices, such as purchasing snacks or books, and even
sacred moral values10–13. Specifically, social learning can be induced in lab
settings: following observing peers’ evaluations, participants often change
their initial evaluations11,13–15. These social learning-induced evaluation
updating can even last for days after the learning15,16. The observed long-
term effect raises an intriguing yet untested question: how does memory
consolidation during post-learning sleep influence the social learning effect?

Mounting evidence suggests that sleep consolidates recently acquired
memories via covert memory reactivation processes17–19. Employing a
method known as Targeted Memory Reactivation (TMR), researchers can
initiate and guide covert memory reactivation during sleep to promote
memory consolidation20,21. This TMR procedure typically consists of three
phases: (1) pre-sleep learning, participants would learn materials accom-
panying sensory cues (e.g., auditory tones, spoken words, odor); (2) TMR
during sleep, during which the experimenter will re-present the same sen-
sory cues (i.e., memory reminders) to sleeping participants to reactivate the
associatedmemories; and (3) post-sleep tests, upon awakening, participants
would complete tests to assess the impact of TMR. Accumulating evidence

has demonstrated that TMRbenefits various types ofmemories (for ameta-
analysis, see Hu et al.22), including speech-word pair associative learning23,
skills learning24,25, spatial memories26,27, and emotional memories28,29. Here,
we aimed to explore the potential impact of TMR on people’s evaluations
acquired through prior social learning.

To date, only a few studies have explored the potential impact of
sleep and/or TMR on evaluation. For example, sleep (vs. wakefulness)
promoted adaptive evaluative choices, by strengthening evaluative
learning memories30. Employing TMR, research shows that re-playing
snacks’ spoken names during non-rapid eye movement (NREM) sleep
could augment subjective preferences for these snacks31. Moreover,
replaying the sound cues paired with the prior counter-bias training
during NREM sleep further reduced implicit social biases32 (but see
ref. 33). These findings suggest that sleep and/or TMR, via sleep-
mediated reactivation of pre-sleep evaluative memories, could modulate
post-sleep evaluations and choices

Analyzing cue-elicited electroencephalogram (EEG) activity during
sleep can provide insights into the underlying neural mechanisms of TMR.
Notably, cue-elicited delta (1–4Hz) and theta (4–8Hz) activities have been
shown to predict TMR benefits on memory performance34–38. More speci-
fically, research also revealed the role of cue-elicited delta and theta power in
predicting TMR benefits in evaluation updating31,39. Furthermore, the sleep
spindles are pivotal in memory re-processing during sleep, with cueing-
related spindle activities predicting TMRbenefits28,40–45.We thus focused on
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the delta/theta power and the sleep spindles underlying the reactivation of
daytime social learning experiences.

Here, we employed the TMR to investigate how reactivating prior
social learning experiences during NREM sleep would influence social
learning-induced evaluation updating (Fig. 1). Following the initial eva-
luation for snacks, participants learned their peers’ evaluations as feedback
while listening to the snacks’ spoken names. These spoken names would
serve as memory reminders about peers’ evaluations of the snacks. During
the subsequent NREM sleep, we replayed half of the snacks’ spoken names
to reactivate their associatedpeers’ evaluations (i.e., TMR).Uponwakingup,
participants showed enlarged social learning-induced evaluation updating
for both cued and uncued snacks. Accompanying behavioral changes, cue-
elicited delta-theta EEG power, and the overnight N2 spindle density, were
associated with the evaluation updating for cued but not for uncued snacks.
These results suggested that sleep-mediatedmemory reactivation processes
fortify social learning-induced evaluation updating.

Results
Effects of social learning and TMR on evaluation updating
We began by examining whether social learning modulated evaluations of
the snacks. In a TMR (cued vs. uncued) by feedback (higher vs. lower)
repeated measure ANOVA, we found the expected social learning effect:
feedback significantly modulated immediate ΔEvaluation (i.e., changes of
evaluation frompre- to post-learning;F (1, 33) = 23.42, p < 0.001, η2G = 0.18;

Fig. 2a). Specifically, when peers’ evaluations were higher than participants’
initial evaluations, participants’ evaluations increased accordingly. In con-
trast, the TMR effect was not significant (F (1, 33) = 0.02, p = 0.877,
η2G < 0.01) nor was the TMR by feedback interaction (F (1, 33) = 0.34,
p = 0.564, η2G < 0.01), indicating that cued and uncued snacks showed
comparable social learning effects before sleep and TMR manipulation.

We next examined the impact of sleep TMR on the overnight ΔEva-
luation from the post-learning to post-TMR phase. We again found a sig-
nificantmain effect of feedback, such that the ΔEvaluation was significantly
increased for the higher than for the lower feedback condition (F (1,
33) = 4.72, p = 0.037, η2G = 0.03; Fig. 2b). This significant feedback effect on
overnight ΔEvaluation indicated that the difference between higher vs.
lower feedback directions further enlarged frompost-learning to post-TMR
phases. Contrary to our hypotheses, neither the TMR (cued vs. uncued) nor
the TMR by feedback interaction was significant (F (1, 33) < 0.01, p = 0.994,
η2G < 0.01; F (1, 33) = 0.01, p = 0.911, η2G < 0.01, respectively).

We further examined the 3-day delay effect of sleep TMR on the
delayed ΔEvaluation from post-learning to the 3-day delayed phase. We
found a non-significant trend of the TMR effect: cued snacks showed
numerically higher ΔEvaluation than uncued snacks (F (1, 33) = 3.69,
p = 0.063, η2G = 0.02; Fig. 2c). Neither feedback (F (1, 33) = 1.23, p = 0.275,
η2G = 0.01) nor interaction effects (F (1, 33) = 0.18, p = 0.677,η2G < 0.01)were
significant. We postulated that the cueing might increase familiarity, thus
enhancing preferences31. Indeed, in a TMR by feedback repeated measure
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Fig. 1 | A flowchart of the experiment procedure. a The experiment included pre-
learning baseline tests, a social learning task in which participants learned their
peers’ evaluations, post-learning immediate tests, TMR during NREM sleep, post-
TMR tests, and 3-day delayed tests. We determined the immediate ΔEvaluation as
the difference between pre-and post-learning, overnight ΔEvaluation as the differ-
ence between post-learning and post-TMR, and delayed ΔEvaluation as the differ-
ence between post-learning and delayed phases. b An exemplar trial in the
Evaluation tasks: Participants evaluated each of the 48 snacks using amouse clicking

on a 1-11 scale, ranging from not preferred at all (1) tomost preferred (11). cDuring
the Social Learning task, participants learned the evaluation from their peers (a circle
indicating their peers’ evaluation) while hearing the spoken names of the snacks
upon the onset of the peers’ evaluations. Half of these auditory cues were then re-
played during the following NREM sleep to reactivate the social learning memories
(i.e., peers’ evaluation toward the snack). This resulted in six experimental condi-
tions (Higher_Cued vs. Uncued; Lower_Cued vs. Uncued; Consistent_Cued vs.
Uncued). The snack picture is from Hare et al.74.
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ANOVA on the familiarity rating, we found that cueing significantly
enhanced familiarity ratings of snacks in the 3-day delayed session (F (1,
33) = 8.28, p = 0.007, η2G = 0.03), but not in the post-learning nor post-TMR
tests (ps > 0.116). Thus, the numerically higher evaluations of cued snacks
could be attributed to their higher familiarity at the delayed phase.

Effects of social learning and TMR on memory errors
Here, we examinedwhether TMR changedmemory errors, i.e., the absolute
numerical differences between participants’ recalled peers’ ratings and the
presented peers’ ratings. In the TMR by feedback repeated measure
ANOVA,we did not find a significantmain or interaction effect in the post-
learning phase (ps > 0.487). In the post-TMR phase, we observed a non-
significant trend of increased memory error for the higher than the lower
feedback conditions (F (1, 33) = 4.01, p = 0.054, η2G = 0.02). However, no
significant main effect of TMR (F (1, 33) = 0.96, p = 0.333, η2G < 0.01), and
the interaction effect was observed (F (1, 33) = 0.02, p = 0.879, η2G < 0.01). In
the delayed phase, no significant main effects nor interaction effects were
found (ps > 0.230).

Relationship between subsequent memory accuracies and
evaluation updating
Although TMR did not influence memory errors when recalling peers’
evaluative ratings,we examinedwhether evaluationupdatingwas associated
with memory accuracies, i.e., whether participants’ recall of the peers’

ratings aligned with the feedback directions. To examine this question, we
conducted feedback by TMR by subsequent memory (correctly vs. incor-
rectly remembered) three-way item-level BLMM for ΔEvaluation.

For the immediateΔEvaluation frompre-learning to post-learning, we
found a significant interaction between subsequent memory and feedback
(median = 2.94, 95% HDI [1.93, 3.85], Fig. 3a). Post-hoc analysis revealed
that when participants correctly remembered the feedback direction, the
immediate ΔEvaluation in the higher feedback condition was significantly
higher than that in the lower feedback condition (higher vs. lower,
mediandiff = 1.55, 95% HDI [1.14, 1.98]). Conversely, when participants
incorrectly remembered the feedback direction, the immediateΔEvaluation
in the higher feedback condition was significantly lower than in the lower
feedback condition (mediandiff = -1.54, 95% HDI [-2.18, -0.85]).

For the overnight ΔEvaluation from post-learning to post-TMR, we
similarly found a significant subsequent memory by feedback interaction
(median= 0.74, 95% HDI [0.03, 1.46], Fig. 3b). Post-hoc analyses revealed
that when participants correctly remembered the feedback direction, the
overnight ΔEvaluation in the higher feedback condition was significantly
higher than that in the lower condition (mediandiff = 0.37, 95% HDI [0.10,
0.65]). In contrast, when participants incorrectly remembered the feedback
direction, the overnight ΔEvaluation did not differ between the higher and
the lower condition (mediandiff =−0.21, 95% HDI [−0.68, 0.25]).

For the delayed ΔEvaluation from post-learning to the delayed phase,
the same BLMM again revealed a significant interaction effect

Fig. 2 | Impact of feedback and TMR on evaluation updating across phases.
Effects of feedback (i.e., peers’ ratings either higher or lower than pre-learning
baseline ratings) and TMR (cued vs. uncued) on ΔEvaluation from (a) pre-learning
to post-learning, (b) post-learning to post-TMR, and (c) post-learning to delayed

phases. The error bars indicate the standard error of the mean (S.E.M.). The hor-
izontal gray dashed line represents the mean of ΔEvaluation at the corresponding
phase. ***: p < 0.001. *: p < 0.05.

Immediate
(Pre-learning to Post-learning)

Overnight
(Post-learning to Post-TMR)

Delayed
(Post-learning to Delayed)

Fig. 3 | Impact of subsequent memory, feedback and TMR on evaluation
updating across phases. Effects of subsequent memory, TMR, and feedback on
ΔEvaluation from (a) pre-learning to post-learning, (b) post-learning to post-
TMR, and (c) post-learning to delayed phases. The horizontal lines indicated the

95% highest density interval (HDI), and the vertical gray lines correspond to 0.
The dot indicates the median. If the 95% HDI does not encompass 0, the result is
significant.
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(mediandiff = 0.71, 95%HDI [0.01, 1.40], Fig. 3c). Post-hoc analyses revealed
that when participants correctly remembered the feedback direction, the
ΔEvaluation between the higher and the lower condition did not differ
(mediandiff = 0.10, 95% HDI [-0.19, 0.38]). In contrast, when participants
incorrectly remembered the feedback direction, the ΔEvaluation of the
higher condition was significantly lower than that in the lower condition
(mediandiff = -0.75, 95%HDI [-1.23, -0.30]). These results suggested that the
evaluation updating was related to the memory of the feedback directions
across all three phases.

Effects of social learning and TMR on implicit evaluation and
speeded choice
Observing the social learning effects on subjective evaluation updating, we
further examined whether social learning and TMR could impact implicit
evaluation (ΔImplicit evaluation based on AMP performance) and speeded
choices (Δ%Choose based on the speeded choice task) by conducting TMR
by feedback repeated measure ANOVAs.

In the speeded choice task, we observed a significant main effect of
feedback in overnight Δ%Choose from post-learning to post-TMR phases:
participants chose more snacks in the higher than the lower feedback
conditions (F (1, 32) = 4.83, p = 0.035, η2G = 0.03). No significant effect of
TMR nor their interaction was found (ps >.316; Supplementary Fig. 1a).
Similarly, no significant effect of feedback, TMR, nor their interaction in
delayed Δ%Choose was observed (ps > 0.283; Supplementary Fig. 1b).

In the AMP, we did not observe a significant effect of feedback, TMR,
nor their interaction in theΔImplicit evaluation frompost-learning to post-
TMR (ps > 0.312; Supplementary Fig. 1c) and to delayed phases (ps > 0.398;
Supplementary Fig. 1d).

Cue-elicited delta-theta power predicted evaluation updating of
cued snacks
Even though we did not observe the TMR effect onΔEvaluation during the
post-TMRphases, we proceeded to investigate how sleep EEG changesmay
drive the overall enhanced social learning effect for both cued and uncued
snacks.

We first examined whether presenting cues during sleep would elicit
significant EEG power changes relative to the pre-cue baseline (i.e.,−1000
to −200ms prior to the cue onset). For this purpose, we performed time-
frequency analyses on artifact-free EEG epochs and conducted a cluster-
based two-tailed one-sample permutation test across time and frequency
bands, based on the EEG power averaged across feedback conditions and
across the pre-defined fronto-central electrodes (F1/2, Fz, FC1/2, FCz, C1/2,
Cz; see Methods for details; Supplementary Fig. 2). We found that the cues
significantly enhanced the 1-30Hz power during an early cluster (-96 to
2928ms relative to the cue onset, pcluster= 0.001, corrected for multiple
comparisons by cluster-based permutation test) but reduced the
5.5–18.5 Hz power in a later cluster (2132–4000ms, pcluster = 0.025, Fig. 4a).
However, we did not find significant EEG power differences between the
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Fig. 4 | Cue-elicited EEG Power and ΔEvaluation. aMemory cue (higher, lower,
and consistent) and (b) control cue-elicited power spectral averaged across nine
fronto-central channels (F1/2, Fz, FC1/2, FCz, C1/2, Cz). The topography on the left-
top and right-top corners indicated the power at all 61 channels at the early and late
clusters, respectively. The contour highlighted significant clusters. The effect of
memory cue-elicited delta-theta power (1–8 Hz) on ΔEvaluation of cued snacks

from (c) post-learning to post-TMR and (d) post-learning to delayed phases. The
black line below the red and blue density plots indicated the 95% highest density
interval (HDI) for higher and lower feedback conditions, respectively. The bottom
black line indicates the difference between higher vs. lower feedback conditions. The
dot indicates the median point. If the 95% HDI does not encompass 0, the result is
considered significant.
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higher and lower feedback conditions (pclusters > 0.085, Supplementary Fig.
3a–c). Similarly, the control cues enhanced the 1-30 Hz EEG power in the
early cluster (−360 to 3028ms relative to the cue onset, pcluster = 0.001) but
reduced the 8.5–17.5 Hz power in the later cluster (2136–4000ms,
pcluster= 0.047, Fig. 4b). However, further analysis did not reveal significant
EEG differences between memory and control cues (pclusters > 0.217, Sup-
plementary Fig. 3d). These results suggested that bothmemory and control
cues were processed during sleep.

Employing the item-level BLMM, we next examined whether memory
cue-elicited EEG power could predict the ΔEvaluation of cued snacks. We
extracted cue-elicited delta-theta power (1–8Hz) and sigma power
(12–16Hz)within the 0–2 s of the early identified cluster at the item level.We
selected the0–2 s timewindowbecause it captured theearly clusteryetdidnot
overlap with the late cluster. The delta-theta EEG power by feedback BLMM
onovernightΔEvaluation (frompost-learning to post-TMRphase) showed a
significant interaction (higher vs. lower, mediandiff= 0.05, 95% HDI [0.01,
0.08], Fig. 4c): cue-elicited delta-theta power predicted the post-TMR over-
night evaluation updating for cued snacks as a function of feedback. Post-hoc
analyses showed that cue-elicited delta-theta power significantly predicted
ΔEvaluation (median = 0.04, 95%HDI [0.01, 0.06]) in the higher, but not in
the lower feedback condition (median =−0.01, 95% HDI [−0.04, 0.02]).
Furthermore, we conducted a subject-level BLMManalysis using cue-elicited
delta-theta power, feedback (higher vs. lower), and their interaction as fixed
variables to predict overnight ΔEvaluation of uncued snacks. However, this
analysis did not yield significant predictions (higher vs. lower,
mediandiff=−0.00, 95%HDI [−0.04, 0.03]). Together, these results indicated
that for cued snacks, higher cue-elicited delta-theta power predicted larger
increase in evaluations in the higher feedback condition.

We next examined whether control cue-elicited delta-theta power
would predict overnight ΔEvaluation. Using subject-level BLMM analyses
including TMR (cued vs. uncued), feedback (higher vs. lower), and control
cue-elicited delta-theta power as fixed factors, we did not find significant
predictions for either cued or uncued snacks (−0.02 <mediandiffs < 0.02, all
95% HDIs overlap with 0).

Regarding delayedΔEvaluation, neithermemory cue- nor control cue-
elicited delta-theta predicted ΔEvaluation (−0.02 < mediandiffs < 0.01, all
95% HDIs overlap with 0, see Fig. 4d). Additionally, cue-elicited sigma
power did not predict both overnight and delayed ΔEvaluation (−0.00 <
mediandiffs < 0.04, all 95% HDIs overlap with 0, Supplementary Fig. 4a, b).

OvernightN2sleepspindledensitypredictedevaluationupdating
for cued snacks
Given the sleep spindle’s crucial role in sleep-mediated memory
consolidation41, we further examined the relationship between cued-elicited
and overnight spindle activities and the evaluation updating.

First, we examined whether the cue elicited spindles relative to the
[−1000 to 0ms] pre-cue baseline. A cluster-based two-tailed one-sample
permutation test on spindle probabilities revealed that both memory
(-24 ~ 1920 ms; pcluster = 0.001) and control cues (−148 ~ 1788ms;
pcluster = 0.001) elicited significantly higher spindle probabilities than the
pre-stimulus baseline (Supplementary Fig. 4c). However, no significant
differences were found between memory vs. control cue-elicited spindle
probability or among the different feedback conditionswithinmemory cues
(pcluster > 0.707, Supplementary Fig. 4d).

Next, we extracted the item-level cue-elicited spindle probabilities by
averaging the spindle probabilities within the significant [0, 1920ms] time
window across cue repetitions. The cue-elicited spindle probabilities were
baseline-corrected by subtracting themean of baseline spindle probabilities
fromthe extractedprobabilities.We then conducted an item-level BLMMto
investigatewhether cue-elicited spindle probabilities predictedΔEvaluation,
with feedback and spindle probabilities as fixed factors and the number of
cue repetitions as a covariate. The results showed that cue-elicited spindle
probability did not predict overnight (higher vs. lower, mediandiff =−0.40,
95%HDI [−3.71, 2.75]) nor delayed (mediandiff =−0.75, 95%HDI [−4.31,
2.62]) ΔEvaluation for the cued snacks (Supplementary Fig. 4e, f).

As we observed overnight evaluation updating for both cued and
uncued snacks, we further explored the associations between overnight
N2 spindle density and overnight ΔEvaluation (post-TMR minus post-
learning) using a subject-level BLMM. In this model, TMR (cued vs.
uncued), feedback (higher vs. lower), and overnightN2 spindle densitywere
treated as fixed factors, allowing us to directly compare the effects of over-
night spindle activities on cued and uncued snacks.

The results showed that for cued snacks, overnight N2 spindle density
differentially predicted overnight ΔEvaluation for higher and lower feed-
back conditions (higher vs. lower, mediandiff = 0.17, 95% HDI [0.01, 0.33];
Fig. 5a). Specifically, increasedovernight spindle densitywas associatedwith
enhanced overnight evaluation for the higher feedback condition yet with
reduced evaluation in the lower feedback condition. In contrast, this effect
was not significant for uncued snacks (higher vs. lower, median diff =−0.01,
95%HDI [−0.18, 0.14]; Fig. 5a). However, the same BLMMdid not predict
delayedΔEvaluation for either cued (higher vs. lower,mediandiff = 0.08, 95%
HDI [−0.10, 0.27]; Fig. 5b) or uncued snacks (higher vs. lower,
mediandiff = 0.01, 95% HDI [−0.18, 0.19]; Fig. 5b).

To understand the function of N2 spindles in the evaluation updating,
we further explored whether spindle density during the early (first three
hours of sleep, overlapping with the TMR cueing) and late N2 (after three
hours until the next morning wakefulness, following TMR cueing) would
predict overnight ΔEvaluation. In this model, we included time (early vs.
late), TMR (cued vs. uncued), feedback (higher vs. lower), and N2 spindle
density as fixed factors. The results showed that both early and late
N2 spindle density predicted overnight ΔEvaluation of cued snacks differ-
ently for higher and lower feedback conditions (higher vs. lower; early:
mediandiff = 0.17, 95% HDI [0.01, 0.33]; late: mediandiff = 0.16, 95% HDI
[0.03, 0.28]; Supplementary Fig. 5a, c). However, neither early nor late
spindle density predicted overnight ΔEvaluation for uncued snacks (higher
vs. lower; Early: mediandiff =−0.06, 95% HDI [−0.22, 0.10]; Late:
mediandiff = 0.00, 95% HDI [−0.12, 0.12]; Supplementary Fig. 5b, d).

Discussion
People often change their evaluations and opinions upon learning about
their peers’ evaluations and choices, i.e., social learning7–9. Moreover, sleep
impacts social and non-social decision-making46–49. Combining the social
learning paradigm with sleep-based targeted memory reactivation (TMR),
we investigated whether reactivating the daytime social learning experience
during non-rapid-eye-movement (NREM) sleep could further promote
social learning-induced evaluation updating. Although TMR did not
modulate social learning, social learning-induced evaluation updating
became enlarged following overnight sleep for both cued and uncued
snacks. Examining sleep EEG activity showed that the cue-elicited delta-
theta (1–8Hz) power and the overnight N2 spindle density predicted the
overnight evaluation updating of cued but not uncued snacks. Together, we
provided new evidence that neural activity indicating memory reactivation
supports social learning and evaluation updating during sleep.

TMR benefits various types of learning by promoting sleep-mediated
memory consolidation22. However, how TMR may benefit social learning
remains largely unknown. A previous study endeavored to influence
interpersonal trust via TMR, yet without sleep or TMR effect50. Here,
although we did not find a significant TMR behavioral effect, cue-elicited
delta-theta power and the overnight N2 spindle density predicted social
learning-induced evaluation updating for cued snacks. Mounting evidence
has suggested that delta-theta power characterizes memory reactivation
during sleep42,45,51–53. Our findings are thus consistent with this research
demonstrating the beneficial role of cue-elicited delta-theta power in eva-
luation updates31,39 and long-term memory maintenance34–36.

Sleep spindles support memory re-processing during sleep34,41,51,54.
Here, although cue-elicited spindle activities did not predict evaluation
updating, we found that the overnight N2 spindles were associated with
overnight evaluation updating. This finding aligns with previous non-TMR
sleep studies demonstrating that spontaneous N2 spindle density could
predict memory consolidation55–57. However, overnight spindles only
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predicted cued but not uncued snacks, suggesting that TMR may bias
overnight endogenous memory reactivation towards the cued snack58.
Supporting this hypothesis, we found that the late-night (following TMR)
N2 spindle density significantly predicted evaluation updating for cued
snacks. While this explanation is tentative, future research could examine
cue-elicited and spontaneous spindle activities to better understand the role
of spindles in exogenous and endogenous memory reactivations34,40,54.

Our findings contribute to the theoretical understanding of how
memory impacts evaluations in social learning and sleep1,2. We found that
only when participants could correctly remember the feedback direction,
they showed the social learning effect by following peers’ evaluations.
Contrary to previous research that focused on memory interference that
weakens memories59, our study aimed to change evaluation through sleep-
mediated memory reactivation and consolidation. Together with previous
TMR and sleep research on memory and evaluations30,31, we provided new
evidence on how TMR and overnight sleep would also influence social
learning-induced evaluation updating.

In addition to memory accuracies that capture episodic retrieval of
peers’ evaluations, we also measured participants’ familiarity ratings
towards the snacks. Intriguingly, we found that TMR increased familiarity
with the cued snacks in the 3-day delayed session, which may influence the
delayed evaluations. This finding alignedwithwell-establishedfindings that
people preferred familiar over unfamiliar snacks60,61 and the findings that
merely re-playing snacks’ names during sleep could enhance people’s pre-
ference toward these snacks31. Notably, the TMR’s benefits in strengthening
familiarity emerged in the delayed but not in the immediate test, which is
consistentwith recent evidence that TMRoften showeddelayed benefits25,54.
One intriguing question that warrants future research is the respective
impacts of episodic memory and familiarity on human evaluations and
decision-making, and how sleep may influence different retrieval processes
that support decision-making.

Limitations and future directions shall be discussed. First, while we
found overnight evaluation updating for both cued and uncued snacks,

item-level cue-elicited EEG activity only predicted evaluation updating for
cued snacks. One possibility is that the reactivation of cued snacks may
generalize to uncued snacks, given that they share the same learning
context35,62,63. Future research shall test whether and when generalization
occurred during TMR and sleep. Second, the classic social learning para-
digm adopted here involved passive observation of peers’ evaluations in
laboratory settings. Given that social learning often happens during real-life
interpersonal interactions64,65, future research shall examine the role of sleep
and TMR in consolidatingmore realistic social learning experiences. Lastly,
while people are intrinsically motivated to follow peers’ opinions given the
universal need to seeksocial belongingness66,67, our studydidnotmanipulate
motivations involved in many social learning scenarios68. Given that
motivation could biasmemory reactivation during sleep69,70, future research
shall consider manipulating motivational processes during social learning,
and examine howmotivation interacts with sleep andmemory reactivation
to change behavior.

In conclusion, we found that the social learning-induced evaluation
updating became more pronounced after sleep, irrespective of memory
cueing during sleep. Sleep EEG activity, such as the cue-elicited delta-theta
power and the overnight N2 spindle activity, supported the evaluation
updating for the cued snacks. Our research contributes to the theoretical
understanding ofmemory-based evaluation by highlighting the significance
of offline sleep-mediatedmemory reactivationprocesses.Considering social
learning can influencemoral decision-making12 and healthy behavior11,71–73,
using TMR and sleep in conjunction with social learning may offer insights
into fostering adaptive behaviors in social and healthy contexts.

Methods
Participants
We recruited 45 participants from a local university (35 females; Age,
Mean = 22.98, S.D. = 2.81). Participants were excluded from subsequent
behavioral andEEGanalysis if the auditory cueswereplayed fewer than four
rounds (n = 9) or due to technical problems during EEG recording (n = 2),

Fig. 5 | Relationship between overnightN2 spindle
density and evaluation updating across phases.
The relationship between overnight N2 Spindle
Density and (a) overnight and (b) delayed ΔEva-
luation. The left figure shows the effect on the cued
snacks, while the right figure represents the effect on
the uncued snacks. The vertical gray lines corre-
spond to 0. The horizontal red and blue lines indi-
cated the 95% highest density interval (HDI) for
higher and lower feedback conditions, respectively.
The bottom black line indicates the difference in
higher vs. lower feedback conditions. The dot indi-
cates the median. If the 95% HDI does not encom-
pass 0, the result is considered significant.

Overnight

Delayed

a

b
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resulting in 34 participants being included in the analyses. All participants
were native Chinese speakers, right-handed, not color-blind, and had
normal or correct-or-normal vision. In addition, they reported good sleep
qualities without any history of neurological, psychiatric, or sleep disorders.
All participants provided written informed consent prior to the participa-
tion and were debriefed and compensated after they completed the study.
This research was approved by the Human Research Ethics Committee of
the University of Hong Kong (HREC No. EA1904004).

Stimuli
We selected 48 snack images from the snack and food images database74,75.
Spoken names of snacks were generated in English using the Microsoft
Azure Text-to-Speech function (language = “en-GB”). The 48 snacks were
then allocated to one of six experimental conditions based on each parti-
cipant’s baseline evaluation (i.e., the preference rating before the social
learning). To do this, all 48 snacks were first sorted in descending order
based on the baseline ratings and were subsequently divided into eight
subgroups following this ranked order, each consisting of six snacks. For
instance, snacks in this first subgroup would rank from first to sixth, while
snacks in the second subgroup would rank from seventh to twelfth, and so
on. Next, in each of the eight subgroups, the six snacks were randomly
assigned to six experimental conditions from the 2 (TMR: cued vs. uncued)
by 3 (social feedback frompeers: lower vs. consistent vs. higher) design. This
procedure resulted in eight items in each of the six experimental conditions,
with baseline preferences and familiarity ratings not significantly different
between different conditions (ps > 0.087; see Supplementary Table 1 for
details).

Design and procedure
All tasks were programmed and presented by PsychoPy (2020.1.3)76. Par-
ticipants visited the lab twice, separated by three days (Fig. 1a).

During the first lab visit, participants arrived at the lab at around 20:00.
After cleaning up and the EEG setup, participants completed the Inter-
personal Reactivity Index (IRI)77, the Balanced Inventory of Desirable
Responding (BIDR)78, and provided demographical information. Partici-
pants completed the following tasks in order. First, participants completed a
psychomotor vigilance task (PVT, to measure alertness), a cue familiar-
ization task (to get familiar with auditory cues and snack images), and an
evaluation task (to indicate their baseline preferences for snacks). Second,
participants performed a social learning task in which they learned about
their peers’ evaluation of snacks (i.e., snack-peers’ rating associations) while
hearing the spokennamesof the snacks (i.e.,memory reminders). Following
the social learning task, participants completed the following post-learning
tests: an affect misattribution procedure (AMP) task (to measure sponta-
neous evaluation), a speeded choice task (to measure choice), another
evaluation task, and a cued recall task (to measure memories for peers’
ratings). Upon finishing these tasks, participants went to the overnight sleep
session, wherein trained experimenters administered the TMR during
NREM sleep.

After ~8 h of bedtime (12 a.m. to 8 a.m.), participantswoke up andhad
breakfast. After ~20min of refreshing up, participants’ vigilance levels were
assessed again, followed by AMP, speeded choice task, evaluation task, and
cued recall task. Three days later, participants returned to the same lab and
completed the same set of tasks.

To test whether vigilance levelsmight differ across phases, participants
completed a 5-minute Psychomotor Vigilance Task (PVT) at the beginning
of eachphase.During thePVT, afixationwasfirst presentedon the center of
the screen with a jitter duration of 2–10 s. Next, a counter starting from 0
would replace thefixation. Participants shall press the button as soon as they
detect the changes. Their response times (RTs)were presented on the screen
as the performance feedback.We foundno significant RT differences across
phases, F (1.62, 53.41) = 1.78, p = 0.183, η2G = 0.01, suggesting no significant
differences in vigilance levels across phases.

Following the PVT, participants were familiarized with the spoken
names of the snacks in the cue familiarization task. Each trial started with a

0.3 s fixation, followedby a snack image (see Fig. 1 for examples), whichwas
presented on the center of the screen for 2 s, accompanied by its spoken
name (i.e., “Combos”) being played via an external speaker. The inter-trial
interval (ITI) was 1 s. The task included three blocks, each containing all
48 snacks being randomly presented.

To assess participants’ evaluation of the snacks, we asked participants
to rate their preference and familiarity with all 48 snacks four times: at pre-
learning (baseline), post-learning, post-TMR, and 3-day delayed phases
(Fig. 1b). In the evaluation task, each trial began with a 0.3 s fixation, fol-
lowed by the presentation of a snack image on the screen. Using a blue
trianglepresentedon the screen, participants then evaluated their preference
for the item on a 1–11 scale (1 = Extremely Unwanted, 11 = Extremely
Wanted) and their familiaritywith the item (1=ExtremelyUnfamiliar, 11 =
Extremely Familiar). Next, we calculated the evaluation updating (ΔEva-
luation) as outcome measures by subtracting the rating between every two
phases, including post-learning minus pre-learning (immediate ΔEvalua-
tion), post-TMR minus post-learning (overnight ΔEvaluation), delayed
minus post-learning (delayed ΔEvaluation, Fig. 1a).

During the social learning task, participants learned their peers’ eva-
luations (Fig. 1c). Participants were informed that their peers were students
from the same university. The learning included 240 trials in 5 blocks, with
each block containing all 48 snacks. Each trial started with a blank screen
(1.2–1.8 s), followed by a fixation cross (0.5 s). The snack image was then
presented in the center of the screen for 1.5 s, together with participants’
baseline evaluation as indicated by a triangle on the preference rating scale.
The scale disappeared on the screen, leaving the same snack image on the
screen for 1.5 s as a buffer. Afterward, the peer’s rating was indicated by a
circle on the same preference rating scale for 3 s, while the spoken name of
the snack was aurally played (~1 s) to be linked with the peers’ preference
ratings. Following a 1.5 s blank screen, with only snack images being pre-
sented on the screen, participants rated the preference again (3 smaximum)
using the mouse. Note that the peer ratings feedback was pre-programmed
for each participant: feedback was either consistent, higher, or lower than
participants’pre-learningbaseline ratings. In thehigher or lower conditions,
the group ratings would be 1, 2, or 3 points above or below the participants’
initial ratings, respectively. To increase the authenticity of the feedback, the
chance of 3-point difference feedbackwas half of the probability of receiving
1 or 2-point difference feedback. We divided 48 snacks into the six
experimental conditions to ensure the baseline preference ratings were
comparable across conditions (for details, see Stimuli).

Tomeasure the implicit evaluation for snacks, we performed theAffect
Misattribution Procedure (AMP)79 in the post-learning, post-TMR, and
delayed tests. Each trial of the AMP task started with a 0.3 s fixation, fol-
lowed by a snack image serving as a prime. The snack image was shortly
presented for 75ms, followed by a 925ms blank screen. Afterward, a
Tibetan character was presented on the screen for 0.1 s and replaced by a
mosaic image as a mask. Participants decided as soon as possible whether
the target character was pleasant (“A”) or unpleasant (“L”). The AMP task
contained six blocks. Forty-eight snacks were randomly presented in each
block. We then calculated the update of implicit evaluation (ΔImplicit
evaluation) by subtracting the percentage of choosing “pleasant” between
post-TMR/delayed and post-learning phases at the item level.

In the Speeded Choice Task, participants made speeded choices
(purchase or not) toward the snacks using their own compensation in the
speeded choice task. Participants completed this task three times: in the
post-learning, post-TMR, and delayed tests. Each trial started with a 0.3
fixation, followed by a snack image presented on the screen for 1.5 s max-
imum. Participants were required to respond as soon as possible whether
they would like to purchase the snack or not (“A” for yes, “L” for no). The
speeded choice task contains three blocks, with 48 snacks randomly pre-
sented in each block. We then calculated the choice updating (Δ%Choose)
by subtracting thepercentage of choosing “Yes”betweenpost-TMR/delayed
and post-learning phases at the item level.

In the Cued Recall Task, we assessed participants’ memory of their
peers’ ratings for each snack. Participants shall recall and indicate their
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peers’ ratings in the post-learning, post-TMR, and delayed phases. In the
post-learning tests, the cued recall task contained two blocks: a test with a
feedbackblock anda testwithout feedbackblock. In the feedbackblock, each
trial began with a 0.3 s fixation, followed by a snack image and a preference
rating scale being visually presented, accompanied by the spoken name of
the snack. Participants clicked on the scale to indicate their peers’preference
rating. Following a 1 s blank screen, the correct ratings were presented as
feedback, together with the same snack image accompanied by its spoken
name aurally played. In the no-feedbackblock, trials were similar to those in
the feedback block, except no feedback was presented. In both the post-
TMR and delayed phases, participants indicated their memories of peers’
ratings for each snack without feedback.

Memory error was defined as the absolute difference between parti-
cipants’ recall of the feedback and the presented feedback rating. We also
coded participants’memory accuracy as follows: If participants’ recollection
of peers’ ratings aligned with the feedback directions (e.g., higher, lower,
consistent), the memory was deemed correct. Conversely, the memory was
deemed incorrect. Thus, accuracy was coded regardless of the numerical
discrepancies between the peers’ ratings and the recall.

TMR during NREM sleep
Half of the spoken names of the snacks (24 out of 48, e.g., “Combos”) and
eight additional spoken names of food items (e.g., “Celery”) were played
during the TMR. These eight stimuli were never presented before the TMR
and were not paired with any peers’ ratings, thus serving as non-memory
control cues. Throughout the night, pink noise was played as the back-
ground noise. Well-trained experimenters monitored the EEG brainwaves
and identified the sleeping stages for TMR administration. For online sleep
monitoring, F3/F4, C3/C4, P3/P4, O1/O2, EOG, and EMG, with online
reference atCPz,were selected.Upondetection of stable slow-wave sleep for
at least 5minutes, the names of the snacks were played via a loudspeaker
placed above the participant’s head. In each block of the TMR, all 32 cues
(24 snack cues and eight control cues) were randomly played (~1 s) with an
inter-stimulus interval (ISI) of 4 s. A 30-s interval separated each round of
playing. The TMR phase was terminated when 20 cueing rounds were
completed or reached 2 a.m., whichever came first. Cueingwas immediately
paused when participants showed signs of micro-arousal or awakening and
entered N1 or REM sleep. Cueing would be resumed when participants
returned to stable slow-wave sleep. Participants were excluded if they
received fewer than 4 TMR rounds (n = 9). Accuracies of TMR cueing were
validated by comparing the cueing time with offline sleep staging results
using the YASA toolbox (0.6.1)80, which confirmed that themajority of cues
were played during the N3 sleep stage (Mean ± S.D., 92.28 ± 18.40%).

EEG acquisition
Continuous EEGs were recorded with an eego amplifier and a 64-channel
gel-based waveguard cap based on an extended 10–20 layout (ANTNeuro,
Enschede, and Netherlands). The online sampling rate was 500 Hz, with
CPz as the online reference andAFz as the ground electrode. The horizontal
electrooculogram (EOG) was recorded from an electrode placed 1.5 cm to
the left external canthus. The impedance of all electrodes was maintained
below 20 kΩ during the recording. During sleep, two additional electrodes
were attached to both sides of the chins to measure electromyography
(EMG) with a bipolar reference.

EEG preprocessing
Sleep EEG was processed offline using custom Python (3.8.8) scripts and
MNE-Python (0.23.4)81. To facilitate subsequent EEG preprocessing and
analyses, the overnight EEG was cropped from 300 s ahead of the first and
300 s after the last TMR cue. Unused channels (EOG, M1, and M2) were
removed from the cropped EEG data. Cropped raw EEGwas notch-filtered
at 50Hz andnext filteredwith a bandpassfilter of 0.5–40Hz.Afterward, the
EEGwasdownsampled to 250Hz.Bad channelswere thenvisually detected,
removed, and interpolated. The EEG data were next re-referenced to the
whole-brain average, followed by segmentation into [−15 s to 15 s] epochs

relative to the onset of the cue for spindle probability analysis. Bad epochs
were then visually detected and removed from further analyses. Artifacts-
free EEG data were further segmented into [−2 s to 6 s] epochs for time-
frequency analysis. The number of remaining epochs for each condition is
provided in Supplementary Table 2. The overnight continuous EEG data
were also retained for sleep staging and overnight spindle detection.

Time-frequency analysis
In the time-frequency analysis,wavelets transformationwith variance cycles
(three cycles at 1 Hz in length, increasing linearlywith frequency to 15cycles
at 30Hz)was applied to the [−2 s to 6 s] epochs to compute time-frequency
representation (TFR) for the EEG on each of the 61 channels. Subsequently,
epochs were further segmented into [−1 s to 4 s] epochs to eliminate edge
artifacts. The trial-level spectral power was normalized (Z-scored) using
[−1 s to−0.2 s] baseline of the averaged spectral power of all trials.We then
performed statistical tests (see Statistical Analysis for details) on the aver-
aged power within the nine pre-defined fronto-central channels (F1/2, Fz,
FC1/2, FCz, C1/2, Cz). These nine channels were selected per previous
studies examining auditory/memory processing during sleep82,83.

Offline automated sleep staging
The offline sleep staging was conducted with the YASA toolbox (0.6.1)80

implemented in Python (3.8.8). Raw overnight continuous EEG data were
re-referenced to FPz according to theYASA recommendation. Sleep staging
was based on C4 (or C3 if C4 was marked as a bad channel) and EOG (see
Supplementary Table 3 for sleep stage information).

Spindle detection
The automated spindle detection was implemented in the YASA toolbox
(0.6.1)80. We applied three thresholds in identifying a spindle: 1) relative
power, the 11-16Hz sigma power) relative to the total power in the 1-30Hz
broadband frequency, 2) correlation, the correlation between sigma-filtered
signal and broadband signal, and 3)moving rootmean square (RMS) of the
sigma-filtered signal. At Cz (or C3 if Cz was marked as a bad channel). We
detected overnight N2 spindles (relative power = 0.2, correlation = 0.65,
RMS = 1.5)84,85 andN3 spindles (relative power =None, correlation=None,
RMS = 1.5)82,86. The results related to N3 spindles are provided in Supple-
mentary Fig. 6. For cue-elicited spindles, given that 92.28% of our cues were
played during the N3, we used the same N3 spindle parameters to artifact-
free [−15 s to 15 s] epochs relative to the cue onset. We adopted different
spindle detection parameters for the N2 and N3 separately because N2 and
N3 showed distinct EEG characteristics. Specifically, N3 sleep is char-
acterized by high amplitude 0.5–4Hz delta-wave activity, while N2 sleep is
characterized by a burst of spindle activity and the K-complex, among
ongoing theta activity87,88. Upon detection of individual spindles, we cal-
culated the N2 spindle density using the following formula55–57:

Spindle density N2ð Þ ¼ The number of spindles detected N2ð Þ
LengthðN2=minÞ ð1Þ

For cue-elicited spindles within the [−15 s to 15 s] epochs relative to
cue onset, the algorithm generated a series of 0/1 binary values to indicate
spindle presence or absence for each 4ms timepoint. The cue-elicited
spindle probability was next determined by computing the proportion of
detected spindles across trials at each timepoint34,82,89. Finally, the epochs
were further segmented into [−1 to 5 s] epochs.

Statistical analysis
First, we investigated the impact of social learning and TMR on changes in
evaluation, implicit evaluation, speeded choice, and memory error. We con-
ducted repeated-measureANOVAwithR (4.2.2) and the afex package (1.2.1)
implemented in R. We further examined the effects of social learning, TMR,
and subsequent memory on evaluation updating. Due to the limited number
of trials after separating trials into correctly vs. incorrectly remembered, we
adopted an item-level linear mixed model. To deal with the singular fitting
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problem, we chose a Bayesian linear mixed model (BLMM) with R using the
brmspackage (2.20.4)90. Since evaluationswereonly testedonce in eachphase,
the evaluation updating at the item level is discrete (from -8 to 8). Therefore,
we adopted a cumulative distribution in the BLMM and transformed the
ΔEvaluation into ordinal-level data. The following BLMM was applied:

ΔEvaluation∼TMR � Feedback � Subsequent Memory

þð1þ Feedback � Subsequent Memory SubjectIDÞ ð2Þ

Next, we investigated whether cues would elicit significantly different
EEG power changes and spindle probability. We employed a cluster-based
two-tailed one-sample permutation test, implemented in the MNE toolbox
with 1000 randomizations and a statistical threshold of 0.05.

To quantify the relationship between cue-elicited power and overnight
and delayed ΔEvaluation, we continued to utilize item-level BLMM. The
cue-elicited power was extracted from the significant clusters at the item
level. We also adopted a cumulative distribution and transformed the
ΔEvaluation to ordinal-level data. Because we considered that the cueing
repetition could impact the signal-to-noise ratio of EEG data, we took the
repetition number (N) as a covariate. The following BLMMwas employed:

ΔEvaluation∼ Power � Feedback þ Nþ ð1þ Power � Feedback SubjectIDÞ
ð3Þ

The same item-level BLMM was employed to investigate the rela-
tionship between cue-elicited spindle probability and evaluation updating:

ΔEvaluation∼ Spindle Prob: � Feedback þ N

þð1þ Spindle Prob: � FeedbackjSubjectIDÞ ð4Þ

We were also interested in the impact of overnight spindle density on
the overnight and delayedΔEvaluation. For this purpose, we conducted the
following subject-level BLMMs on the overnight and delayed ΔEvaluation
respectively:

ΔEvaluation∼ Spindle Density � Feedback � TMR

þð1þ Spindle Density � TMRjSubjectIDÞ ð5Þ

Statistical inferences for the BLMM were based on the 95% highest
density interval (HDI) of the posterior distribution. Effects were considered
significant if the 95% HDI did not encompass 0. Note that we focused on
evaluation updating in the higher and lower conditions, wherein partici-
pants were expected to change their evaluations. It is important to note that
employing Bayesian statistics mitigates concerns of multiple
comparisons91,92, which allows a more straightforward interpretation of
results across different comparisons in our study (e.g., cued vs. uncued).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Preprocessed data are available on the Open Science Framework (OSF) at
https://osf.io/t96z5. Supplementary materials are available online.

Code availability
Analysis scripts are available on the Open Science Framework (OSF) at
https://osf.io/t96z5.
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